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Abstrac t  The effect of a remote substituent on the facial selectivity in a 
nucleophilic 1,4-conjugate addition was investigated in the dibenzobicyclo- 
[2.2.2]octatriene skeleton. A nia'o substituent favored syn-addition of ethanethiol toward 
the embedded 2(5H)-furanone moiety. Polar solvents increased the magnitude of the 
selectivity. Copyright © 1996 Elsevier Science Ltd 

In 1,4-conjugate additions toward cyclic unsaturated lactones, facial selectivity is generally determined by 

the stereochemistry of the substituents on the ring. 1) Other effects such as stereoelectronic effects are also 

important in some cases. 2,3) In this paper, we present an example that can not be accounted for in terms of the 

classical steric effect: we designed and synthesized several lactones with 2(5H)-furanone (A) embedded in a 

dibenzobicyclo[2.2.2]octatriene frame (1a-c). In this system, the aromatic substituent is far from the reaction 

center, and the n-face is considered to be free from conventional steric effects. Furthermore, the use of the 

cyclic lactone moiety fused to the bicyclo skeleton avoids complexity arising from cis/trans protonation of the 

intermediate adduct. 4) Thus, these compounds will be substrates with minimal bias close to the reacting sp 2- 

carbon, allowing us to separate steric, torsional and stereoelectronie variables. 
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We carried out the base-catalyzed 1,4-addition of ethanethiol to l a - c  in a variety of aprotic solvents at 

23°C for 75 hrs. 5) The results are summarized in Table I. The syn/anti ratios were determined from signal 

integration values in the 1H-NMR, the structures being confirmed by detection of proton NOEs. The 3-nitro 

laetone ( l b )  favors syn-addition rather than anti-addition in all cases. The 2-nitro lactone (lC) also favors 

syn-addition, though the ratio obtained in a neat condition is smaller than that of 1 b. The adduct 3c  did not 

change into 2C at 23°C during 94 hrs in a mixture of ethanethiol and sodium thioethoxide without solvent. In 

DMF as a solvent, the isomerization was observed to only a small extent (3c:2e---93:7). These results indicate 

that the distributions of products are kinetically determined. In both cases (1 b and l e )  it was found that the 

magnitude of the syn-preference increased with increasing solvent polarity: the synlanti ratio of l b  and that of 

l e  reached 79:21 and 75:25 in DMF, respectively. On the other hand, the reaction in a non-polar solvent such 
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as n-hexane shows a smaller selectivity than those in polar solvents, though syn-preference is still observed. 

These results indicate intrinsic syn-preference of attack of the nucleophilic reagent on l b  and le .  
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23"C, 75hrs 

x2 " ~ -  x2 
X2 2a-c Xl 3a-c x~ 

Xl syn-adduct anti-adduct 

Table 1 Facial Selectivity in Nucleophilic 1,4-Conjugate Addition of Ethanethiol. a,b,c 

X 1 X 2 solvent yield(%) syn : anti 

l a H H neat 84 50 : 50 
l b  H NO2 neat 100 63 : 37 
l b  H NO2 n-hexane 73d 61 : 39 
l b  H NO2 CCI4 16e 62 : 38 
l b  H NO2 benzene 90f  62 : 38 
l b  H NO2 Et20 93 69 : 31 
l b  H NO2 DMF 94 79 : 21 
l b  H NO2 DMSO 91 77 : 23 
1¢ NO2 H neat 92 54 : 46 
1¢ NO2 H DMF 95 75 : 25 
l c  NO2 H DMSO 98 73 : 27 

a) These reactions were carded out at 23°C for 75 hrs. b) Anti/syn ratios were determined 
from signal integration values in the 1H NMR spectrum, c) EtSH was used at 307-357 
equiv.(nea~, or 64-67 equiv.(other solvents). NaSEt was used in catalytic amount, d-f) 
Recovery of substrate: d) 20%, e) 760, f) 10%. 

The syn-preference of I b and 1 e is similar to those observed in the reduction of the related ketones, 

9,10-dihydro-9,10-ethanoanthracen-11-ones (dibenzobicyclo[2.2.2]octadienones) and in the epoxidation and 

dihydroxylation of the related olefins, 9,10-dihydro-9,10-ethenoanthracenes (dibenzobicyclo[2.2.2]- 

octatrienes). 6) Although the trajectories of the attacking reagents are considered to be different in these 

reactions, 2) all three types of reactions favor syn-addition, which excludes a predominant role of divergent 

trajectories in these dibenzobicyclic systems. 
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Figure I Unsymmetrization of LUMO of lactone I b  

The substituent effect of the aromatic nitro group can be accounted for in terms of g-orbital 

unsymmetrization. 6,7) The LUMO of the dibenzobicyclic lactone can be analyzed as an in-phase combination 
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of three vacant ~* orbitals, i.e., those of benzene, nitrobenzene and the 2(5H)-furanone moiety. The 

energetically lower-lying x* orbital of the nitrobenzene fragment contributes significantly to the LUMO of the 

whole molecule rather than the ~* orbital of the non-substituted benzene. Thus the LUMO of the 2(5H)- 

furanone is unsymmetrized (Figure 1). Therefore the syn-attack of the nucleophilic reagent is favored because 

of the additional in-phase interaction of the ~* lobe of the nitrobenzene motif. 8) 

The predominant component of the LUMO of the whole molecule is the n* orbital of the nitrobenzene 

fragment rather than that of the reaction center. However, the orbital being perturbed to generate the syn- 

preference is the LUMO and not the next LUMO, which contains the re* orbital of the reaction center as a main 

component. This is similar to the selectivity we reported previously. 6.7,16) 
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(Figure 2), while the energy difference of the two fragments is the same in magnitude. Therefore the 
interaction of these two fragment's ~* orbital in 1 e is smaller than that in 1 b, and l e  shows a smaller 
syn/anti ratio than 1 b. On the other hand, modification of the enhanced orbital interactions by polar 
solvents hides this minute difference of interactions to give comparable selectivities in polar solvents. 

~ N O 2  lb lc NO 2 

Figure 2 Divergent magnitude of n*(furanone)- 
n*(nitrobenzene) overlap in l b  and le  

The facial preference described here may also be accounted for in terms of the Cieplak postulate. 
However, the interpretation of the solvent effect requires modification of the original Cieplak postulate. 9) 
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